#Problem 1
library(tidyverse)
data(iris)
glimpse(iris)
## Rows: 150
## Columns: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
## $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#Problem 2
iris1<-filter(iris, Species=='virginica'| Species=='versicolor' , Sepal.Length>6 , Sepal.Width>2.5)
str(iris1)
## 'data.frame': 56 obs. of 5 variables:
## $ Sepal.Length: num 7 6.4 6.9 6.5 6.3 6.6 6.1 6.7 6.1 6.1 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.8 3.3 2.9 2.9 3.1 2.8 2.8 ...
## $ Petal.Length: num 4.7 4.5 4.9 4.6 4.7 4.6 4.7 4.4 4 4.7 ...
## $ Petal.Width : num 1.4 1.5 1.5 1.5 1.6 1.3 1.4 1.4 1.3 1.2 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ...
glimpse(iris1)
## Rows: 56
## Columns: 5
## $ Sepal.Length <dbl> 7.0, 6.4, 6.9, 6.5, 6.3, 6.6, 6.1, 6.7, 6.1, 6.1, 6.4, 6.…
## $ Sepal.Width <dbl> 3.2, 3.2, 3.1, 2.8, 3.3, 2.9, 2.9, 3.1, 2.8, 2.8, 2.9, 3.…
## $ Petal.Length <dbl> 4.7, 4.5, 4.9, 4.6, 4.7, 4.6, 4.7, 4.4, 4.0, 4.7, 4.3, 4.…
## $ Petal.Width <dbl> 1.4, 1.5, 1.5, 1.5, 1.6, 1.3, 1.4, 1.4, 1.3, 1.2, 1.3, 1.…
## $ Species <fct> versicolor, versicolor, versicolor, versicolor, versicolo…
#Problem 3
iris2<-select(iris1,Species, Sepal.Length, Sepal.Width)
str(iris2)
## 'data.frame': 56 obs. of 3 variables:
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Sepal.Length: num 7 6.4 6.9 6.5 6.3 6.6 6.1 6.7 6.1 6.1 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.8 3.3 2.9 2.9 3.1 2.8 2.8 ...
#Problem 4
iris3<-arrange(iris2, by=desc(Sepal.Length))
str(iris3)
## 'data.frame': 56 obs. of 3 variables:
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ Sepal.Length: num 7.9 7.7 7.7 7.7 7.7 7.6 7.4 7.3 7.2 7.2 ...
## $ Sepal.Width : num 3.8 3.8 2.6 2.8 3 3 2.8 2.9 3.6 3.2 ...
head(iris3)
## Species Sepal.Length Sepal.Width
## 1 virginica 7.9 3.8
## 2 virginica 7.7 3.8
## 3 virginica 7.7 2.6
## 4 virginica 7.7 2.8
## 5 virginica 7.7 3.0
## 6 virginica 7.6 3.0
#Problem 5
iris4<-mutate(iris3, sepalArea=Sepal.Width*Sepal.Length)
str(iris4)
## 'data.frame': 56 obs. of 4 variables:
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ Sepal.Length: num 7.9 7.7 7.7 7.7 7.7 7.6 7.4 7.3 7.2 7.2 ...
## $ Sepal.Width : num 3.8 3.8 2.6 2.8 3 3 2.8 2.9 3.6 3.2 ...
## $ sepalArea : num 30 29.3 20 21.6 23.1 ...
#Problem 6
iris5<-summarize(iris4, meanSepalLength=mean(Sepal.Length), meanSepalWidth=mean(Sepal.Width),sampleSize=n())
print(iris5)
## meanSepalLength meanSepalWidth sampleSize
## 1 6.698214 3.041071 56
str(iris5)
## 'data.frame': 1 obs. of 3 variables:
## $ meanSepalLength: num 6.7
## $ meanSepalWidth : num 3.04
## $ sampleSize : int 56
#Problem 7
iris6<- iris4%>%
group_by(Species) %>%
summarize(MeanLength=mean(Sepal.Length), MeanWidth=mean(Sepal.Width), count=n() )
print(iris6)
## # A tibble: 2 × 4
## Species MeanLength MeanWidth count
## <fct> <dbl> <dbl> <int>
## 1 versicolor 6.48 2.99 17
## 2 virginica 6.79 3.06 39
#Problem 8
IrisBigPipe<-iris %>%
filter(Species=='virginica'| Species=='versicolor' , Sepal.Length>6 , Sepal.Width>2.5) %>%
select(Species, Sepal.Length, Sepal.Width) %>%
arrange(iris2, by=desc(Sepal.Length)) %>%
mutate(iris3, sepalArea=Sepal.Width*Sepal.Length) %>%
group_by(Species) %>%
summarize(MeanLength=mean(Sepal.Length), MeanWidth=mean(Sepal.Width), count=n() )
str(IrisBigPipe)
## tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 3
## $ MeanLength: num [1:2] 6.48 6.79
## $ MeanWidth : num [1:2] 2.99 3.06
## $ count : int [1:2] 17 39
#Problem 9
Long_Iris<-iris %>%
pivot_longer(cols=Sepal.Length:Petal.Width, names_to='Measure', values_to='value',values_drop_na = TRUE)
str(Long_Iris)
## tibble [600 × 3] (S3: tbl_df/tbl/data.frame)
## $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Measure: chr [1:600] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" ...
## $ value : num [1:600] 5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 ...